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ABSTRACT

Six editions of SAT-Mathematical (SAT-M) were factor analyzed using
confirmatory and exploratory methods. Confirmatory factor analyses (using theLISREL VI program) were conducted on correlation matrices among item parcels
for each test edition. An item parcel is a sum of scores on a small subset of
items. Item parcels were constructed to yield correlation matrices that were
amenable to linear factor analyses.

A critical assumption made in the parcel approach was that the items
constituting a parcel measured the same dimension. Another requirement was thatparcels measuring the same construct were parallel to each other. In this
study, content area (arithmetic, algebra, geometry, and miscellaneous) defined
the parcel. Within each content area, several parallel parcels, of 4-7 items
each, were constructed. Parallel parcels were constructed by forming parcels
of approximate equal difficulty and variability.

The primary method used in this study, confirmatory factor analyses of
item parcel data, indicated that the SAT-M editions were unidimensional.
Simultaneous confirmatory factor analyses of the same equating section,
administered to different ability populations, were also conducted. These
analyses were undertaken to test for the hypothesis of factorial invariance
across populations. Results indicated that the unidimensional structure of SAT-M was consistent across different ability populations.

Some additional exploratory analyses were also conducted on item-level
data. Full-information factor analysis (using TESTFACT) was used to assess
dimensionality within item parcels for one test edition. Analyses were
performed assuming a two-parameter model and a three-parameter item response
model; results suggested that all of the parcels were unidimensional. The
results for the two-parameter model were more affected by methodological
artifacts than those for the three-parameter model, demonstrating the need for
the correction for guessing.

Full-information factor analysis was also used to assess the
dimensionality of the 25-item section in one edition of SAT-M, under the
assumption of a three-parameter model. Results of this analysis suggest that
a slight departure from unidimensionality might be attributed to geometry
items.

A third set of exploratory item-level analyses involved least-squares
factor analyses of a smoothed positive definite matrix of tetrachorics adjusted
for guessing. Three sixty-item editions of SAT-M were analyzed, under two types
of scoring: right/wrong/missing and right/wrong. Despite the corrections for
guessing and omitting, difficulty factors emerged, and held up across all three
content areas, suggesting that factor analysis of adjusted tetrachorics suffers
from the same problems that have plagued most other attempts to factor analyze
item data.

The results of this study are seen as evidence that SAT-M is
unidimensional. There appears to be no empirical justification for reporting
subscores based on content. A method for factor analyzing test data, at the
item parcel level, was presented as a possible way to examine dimensionality of
test data, while avoiding some of the problems associated with item levei
factor analyses.
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The goal of this research was to obtain a fuller understanding of what is

being measured by the mathematical portion of the Scholastic Aptitude Test

(SAT-M). Because SAT-M covers a variety of content areas, based on different

mathematics curriculum, it is important to understand the degree to which the

test conforms to a unidimensional model.

This research sought to answer three specific questions:

1) Is SAT-M measuring more than one dimension, and if so, how might these

dimensions be characterized?

2) To what extent is the dimensional structure of SAT-M invariant across

test editions?

3) To what extent is the dimensional structure of SAT-M invariant across

populations of examinees differing in ability?

In addition to learning more about the dimensionality of SAT-M, another

objective of this research was to evaluate possible techniques for factor

a.nalyzing item data. A variety of methods have been advanced for assessing the

dimensionality of binary-scored data. Comprehensive reviews of several

procedures are found in papers by Hattie (1984, 1985) and Mislevy (1986). The

procedures fall into two general categories, IRT-only approaches and factor

model approaches. Applications of both kinds of approaches are summarized in

'Dorans and Lawrence (1987).

A complete review of the literature documenting the theoretical and

practical problems involved in the linear factor analysis of binary scored data
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is beyond the scope of this paper. Dorans and Lawrence (1987) provide a brief

review of which the most salient points are summarized here. The existence of

additional artifactual or "difficulty" factors when phi coefficients are factor

analyzed via a linear model has been a well discussed phenomenon in the

literature. Factor analysis of tetrachoric correlation coefficients

theoretically can circunvent the problem of "difficulty" factors for

free-response items that are right/wrong scored. However, other problems can

occur when tetrachorics are factor analyzed and tim tetrachoric correlation

coefficients are based on binary scored multiple-choice items where guessing is

possible. In this context, failure to take guessing effects into account will

again produce artifactual factors and misleading information as to the number of

factors needed to account for the data. Given the practical problems involved

in the linear factor analysis of binary scored item response data using

tetrachorics (i.e., the matrices are often non-positive definite) and the

assumptions that must be met in order for the procedure to be viable (no or

correctable guessing and normally distributed traits), other approaches that

provide viable options to the problem of assessing item level dimensionality

have been developed.

One set of approaches involves a blending of factor analytic and item

response theory technlques. These procedures involve a generalized least

squares approach attributable to Christoffersson (1975) and marginal maximum

likelihood full information factor analysis (used in this research) based on the

work of Bock and Altkin (1981). Mislevy (1986) has provided an excellent review

of these approaches, along with the closely related procedure attributable to

Muthen (1978, 1984).
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This research also used an approach which involves the linear factor

analysis of item parcel data, or mini-tests, made up of small collections of

non-overlapping items thought tc measure the same underlying dimension or

dimensions. Data on individual items are no longer used directly in deriving

the correlation matrix. Cattell (1956; 1974) was an early advocate of this

approach. Dorans and Lawrence (1987) discuss some of the critical issues

involved in parcel construction.

Methods Used to Assess SAT Dimensionality

. Three approaches to dimensionality assessment were employed to assess the

dtmensionality of ehe SAT-Mathematical tests. The primary approach involved

using the LISREL VI (Joreskog and Sorbom, 1984) computer program to test

specific models for the structure underlying item parcel data. This approach

has been used with success on SAT-Verbal data and Mathematics Level II

Achievement Test data in a pilot test mode by Cook, Dorans, Eignor and Petersen

(1985). In Dorans and Lawrence (1987), this linear confirmatory factor analytic

approach was used on parcels composed of both final form SAT item data and

parcels composed of items used for score equating.

The maximum likelihood full information factor analysis approach (Bock,

Gibbons, and Muraki, 1986), implemented in the computer program TESTFACT, was

used primarily to assess the dimensionality of items within a given parcel. The

full information factor analysis model was used in this way as a check on the

unidimensionality assumption of parcels that is explicitly made by the parcel

approach. The excessive cost associated with running TESTFACT on an entire test

precluded using this program on intact SAT test forms.

A third approach was also employed, namely the use of TESTFACT to produce a

least squares solution to a smoothed positive definite matrix of tetrachoric

6
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correlations that had been corrected for guessing. As will be seen in the

results section, this use of TESTFACT as a more traditional approach to the

factor analysis of item data does not seem to avert the identification of

difficulty factors.

In the remainder of this section, the models employed in our analyses are

formally stated. We start with the LISREL models for item parcel data, move on

to the full information factor analysis models and finish with the analysis of'

adjusted tetrachorics.

LISREL, Analysis of Item Parcels

The use of LISREL on item parcel data to assess test dimensionality is a

cost-effective way of assessing how well postulated structural models fit the

data. Thc parcel approach attempts to circumvent the problems associated with

factoring item data by factoring item parcel scores, i.e., sums of scores on a

small subset of items, which are more amenable to analysis by a linear factor

model than item data. A critical assumption made by the parcel approach is that

the items constituting a parcel or mini-test measure the same dimension. It was

hoped that TESTFACT could be used to test this within-parcel unidimensionality

assumption.

Parcel construction principles. As noted earlier, it is well documented,

e.g., Carroll (1945, 1983) that linear factor analysis of a matrix of phi

coefficients based on binary item data produced by a unidimensional model for

continuous data, will be.viewed as multidimensional with a second dimension

clearly related to item difficulty. As McDonald and Ahlawat (1974) argue, part

of the problem is that a linear regression model is inappropriate for the

7
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item/factor regression, which has to be nonlinear given the bounded nature of

dichotomous data and the unbounded metric assumed for the underlying factor.

Mislevy (1986) summarizes the problems with analyzing phi coefficients

quite suoclly:

lama binary variables are produced by dichotomizing
continucus variables, then, the choice of cutting points
materially affects the values of the expected phi
coefficients. Factor analysis of phi coefficients of
binary variables produced by the same underlying
correlational structure but dichotomized at different
points can conform to factor models with different
structures and possibly different numbers of factors.
(pp. 9-10).

For the parcel approach to avoid the problems of factoring phi

coefficients, the parcels must be constructed in a fashion that is sensitive to

these problems. The major reason for constructing parcel scores is to achieve a

matrix of correlations or covariances that is not affected by item difficulty

and the nonlinearity of the item/factor regression. Parcel construction should

attempt to "linearize" the data by attempting to remove the effects of

nonlinearity and differences in item difficulty.

To mitigate the effects of differences in item difficulty and nonlinearity,

parcel scores should have approximately equal means and variances. In the

terminology of classical test theory, the parcels should be constructed to be

parallel to each other. To achieve parallel parcels, it is esse_Aal to place

approximately equal numbers of easy, middle difficulty and hard items within

each parcel such that each parallel parcel is composed of several nonparallel

items.

A critical question that needs to be addressed is how many items are needed

for a parcel. Experience (Drasgow and Dorans, 1982) indicates that a minimum of

at least three is needed and that six or seven is clearly enough provided that
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the items within a parcel are adequately spaced to achieve a situation in which

the probabilities associated with the parcel score distribution is approximately

normal. A statistical justification for the parallel parcelling approach might

be drawn from the work of Drasgow and Dorans (1982) where they introduce the

notion of a categorization attenuation factor that reduces the correlation

between two continuous variables when one variable is polychotomized. Parallel

parcelling can be viewed as a heuristic approach to converting dichotomous data

into polychotomous data with an eye toward minimizing the size of the

categorization attenuation factor.

LISREL VI: First-order and second-order models. The LISREL VI computer

program (Joreskog and Sorbom, 1984) fits and tests models for linear structural

relationships among quantitative variables. As mentioned earlier, the primary

reason for developing item parcels was to yield variance-covariance matrices

that were amenable to a linear factor analysis. Both first-order factor

analysis and second-order factor analysis are special cases of the LISREL VI

model.

One goal of a factor analysis is to identify the number of common factors

needed to fit the off-diagonal elements of the variance/covariance matrix. This

is known as the number of factors problem. LISREL VI was used to assess the

number of factors problem in the following fashion. For each test edition

studied, the fit of a one-factor model to the correlation matrix among item

parcels (correlation matrices were used to simplify proportion of variance

interpretations and reduce the impact of variable length parcels on the

multifactor solutions), was examined1 . Next, the fit of a two common factor

model to the same data was examined.

1
For the cross-population analysis of equating section parcels, covariance
matrices were factor analyzed to assess the equality of factor structures, as
will be seen later.
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Finally, a second-order factor model was used. A second-order factor

analysis can be thought of as a factor analysis of the first-order factors (See

Schmidt and Leiman, 1957, for a discussion of one approach to hierarchical or

second-order factor analysis.) It is a particularly fruitful approach to employ

a secOnd-order model when one suspects that correlations among the first-order

factors can be explained by a single second-order common factor. Such a model

is particularly applicable to item parcel data that one suspects is essentially

unidimensional. Drasgow and Parsons (1983) suggested a second-order factor

model that influenced the choice of the model and approach used in the Cook,

Dorans and Eignor (in press) study. That same approach was used here.

This second-order factor model decomposes each first-order factor into a

second-order common factor that influences all first-order factors, and a

seco.nd-order group factor which influences performance only on that first-order

factor. Another way of stating this is that second-order group factors are

uncorrelated with each other and with the second-order general factor. If the

contribution of the second-order common factor to every first-order factor is

large, the correlations among the first-order factors will be close to unity.

If the second-order group factor for a particular first-order factor is

relatively large, then the correlations of that first-order factor with other

first-order factors will be among the lowest in the first-order factors

correlation matrix.

To summarize, both first-order factor analyses and second-order factor

analyses were employed. The first-order analyses focused on the number of

factors issue. Both the first-order and the second-order analyses were focused

on assessing hypothesized structures suggested by the item types and content

areas measured by the tests. Fit of the model to the data was the dominant

10
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concern in the first-order analyses. Decomposition of first-order factor

variance into second-order common and group specific components was the main

concern of the second-order analyses.

LISREL VI's indices of fit. LISREL VI provides several indices of fit that

are described by Joreskog and Sorbom (1984). When LISREL VI provides maximum

likelihood estimates of free parameters, it also provides the likelihood ratio

x
2
statistic with associated degrees of freedom and probability level. Ideally,

this index should be helpful in assessing competing models for the data because,

under certain conditions, the difference in x
2
values is itself chi square

distributed with degrees of freedom equal to the difference in degrees of

freedom associated with the two competing models. However, it is important to

keep in mind that this difference in x
2
values is asymptotically distributed as

chi square only if one model is a special case of the other model and the more

general model is true. This difference in x2 values indicates whether the

parameters that are estimated in the more general model add anything to the fit

of the model for the data. It should be noted that Joreskog and Sorbom also

cite several other reasons why the x
2

indices should be used with caution.

Another goodness of fit index provided by LISREL VI is the root mean square

residual,

(1)
n n 2 1/2

RMSR [2 E E (ci4-ci4) /(kl)k) ,

i-1

where k is the number of observed variables, and cij and cij are elements of the

observed and fitted covariance matrices. The RMSR is a useful descriptive index

for comparing the fit of two different models for the data.

In addition to these indices of global fit, LISREL VI provides individual

residuals in both raw and normalized forms. The normalized residuals are taken
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from standard asymptotics based on normality, i.e., the raw residual divided by

an estimate of its standard error; hence the normalized residual is assumed to

be asymptotically a standard normal variable. The formula for a normalized

residual is

(2)
NR

(c c
jj

+ c
ij

2)

/N

where c
ij

and c
ij are elements of the observed and fitted covariance matrices.

Joreskog and Sorbom (1984) suggest that normalized residuals with values greater

than two in absolute value merit close examination. In assessing model fit,

primary attention was paid to the pattern of normalized residuals (referenced to

hereafter as NR).

Full Information Factor Analysis of Item Data

The TESTFACT program (Wilson, Wood, and Gibbons, 1984) was used to obtain

full information factor analysis solutions for selected item parcels. L3ck,

Gibbons and Muraki (1986) describe the fheory behind the TESTFACT pro3raw.

Mislevy (1986) also describes the theory in his description of recent

developments in the factor analysis of categorical variables.

This factor analytic model operates on information contained in the joint

frequencies of the 2P contingency tables of response counts on a p-item test.

Observed performance on an item is presumed to be obtained via a dichotomizing

process performed on the unobserved continuous variable measured by the item.

For each item, there is an assumed threshold parameter which identifies the

location along the continuous variable at which the dichotomous "chop" occurs.

The probability of a correct response to an item is a function of examinee

12
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ability with respect to one or more latent factors and the location of the

threshold parameter along the continuous variable.

The full-information factor analysis solution is applied to a matrix of .

distinct response patterns of rights and wrongs to obtain estimates of factor

loadings and thresholds for each item. Stated differently, TESTFACT is used to

estimate discrimination and difficulty parameters for item data based on a

multidimensional IRT model. The model allows for input of lower asymptotes for

each item, as a way to take into account the effects of guessing.

The full information solution is a maximum likelihood solution in which

estimates of the loadings and threshold for each item are obtained. The

orientation of the factors is orthogonal. In an effort to achieve interpretable

results, TESTFACT allows both orthogonal and oblique rotations through use of

the VARIMAX (Kaiser, 1958) and PROMAX (Hendrickson and White, 1964) rotational

procedures, to be applied to the crthogonal solution.

The TESTFACT program provides standard errors of estimation and statistical

tests of fit. In particular, the program automatically produces a test of

differences in chi-squares for nested models, which is used to determine the

number of factors. Zwick (1987) states that the test statistic is not

distributed as a chi-square with applications of TESTFACT that use Bayesian

priors to constrain parameter estimations because the solution does not involve

maximization of a likelihood function under these circumstances. Unfortunately,

the program does not provide raw or normalized tt.siduals for a fitted

correlation or covariance matrix, as does LISREL, for assessing model fit.

Instead, the residual matrix reported in TESTFACT output is computed as the

difference between the initial tetrachoric matrix and the smoothed one, which

does not indicate how well the factor model fits the data.

13
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The program also produces estimates of amounts and proportions of variances

acCounted for by the underlying factors and communality estimates for the

response process variables. Hence, a scree test can be easily computed to

assess dimensionality. In addition, reasonableness checks on communality

estimates can be performed. For example, averfactoring is probably indicated if

an item's communality exceeds the total test reliability. In other words,

determination of the number of factors issue can be approached from many

different vantage points when using TESTFACT. Over reliance on a sometimes

suspect statistical test is not the only course of action available to TESTFACT

users.

adjusted Tetrachorics Analyses

Factor analysis of a matrix of tetrachoric correlations was, and still is,

a more traditional approach taken to circumvent the problems associated with

factoring a matrix of phi coefficients. If one assumes that the observed counts

in a 2-by-2 table of corrects and incorrects for items j and k arose through

dichotomization of two normally-distributed continuous variables, then one can

estimate from these 2-by-2 tables of counts the correlation among these

underlying item response process variables. In theory, these correlations can

be factor analyzed to produce results in which "difficulty" factors are no

longer present.

In practice, the factoring of tetrachorics is fraught with many

difficulties. First, guessing can have a differential impact on the 2-by-2

counts depending on the item's difficulty. In addition, extreme values of the

underlying correlation are poorly estimated resulting in many arbitrary +1.0's

and -1.0's. Also, since the tetrachorics are estimated pairwise,

inconsistencies can occur across different pairs. Finally, as Mislevy (1986)

14
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notes, there are neither standard errors nor statistical tests associated with

traditional tetrachoric analysis, and tetrachorics, estimation problems aside,

do not describe all the information contained in the 2P contingency table of

response counts on a p item test. In fact, the full information factor analysis

approach that was just described attempts to use all the information in the 2

table to assess the dimensionality in a set of items, while the generalized

least squares approaches of Christofferson (1975) and Muthen (1978), which

Mislevy (1986) ably describes and aptly refers to as "partial information"

approaches also use more data than standard tetrachoric analyses. Relative to

the analysis of tetrachorics, the full information and partial information

approaches are quite expensive. In other words, tetrachoric analysis is

attractive because it is inexpensive.

TESTFACT appears to be able to deal with many of the problems that have

plagued traditional tetrachoric analysis. Zwick (1986) has found a way to use

TESTFACT to produce a relatively inexpensive unweighted least squares analysis

of a smoothed positive definite tetrachoric correlation matrix that can be

adjusted for omits and guessing. We used this approach on entire test forms

because Zwick's experience indicated that results closely mirrored the full

information solution at a fraction of the cost. Bock, Gibbons and Muraki (1986)

describe the particulars of the various adjustments made to the tetrachorics.

Procedures

Data Source

The data analyzed in this study were obtained from six editions of

SAT-Mathematical. Each edition contains two operational SAT-Mathematical

sections that produce a SAT-Mathematical score based on a total of 60 items (40

five-choice items and 20 four-choice items). The mathematical questions require

15
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applications of mathematical techniques to solve items from three content areas:

arithmetic, algebra, and geometry. The three content areas are represented by

approximately the same number of questions. Items which cannot be classified by

content are placed in a group referred to as "miscellaneous" (in general, seven

or eight items per test form are placed in this category).

Choice of Editions for Factor Analyses

The six editions analyzed in this study were selected from two previous

equating data collection designs. With the basic SAT equating data collection

design, ow. edition (Z) is administered to one group of examinees, a second

edition (X) is administered to a second group of examinees, and a third edition

f) is administered to a third group of examinees. In general, the examinee

groups taking editions X and Z represent populations of similar ability, and the

group taking edition Y represents either a less able or more able candidate

population. Thus, factor analysis of SAT data from equating samples provides a

means for assessing the dimensionality of editions administered to examinee

groups of varying ability that are representative of actual SAT populations.

Two of the six editions were from January administrations of the SAT, where

&AT-Mathematical means tend to be below the yearly average: In January 1982 the

&AT-Mathematical mean was 435, while in January 1983 it was 431. Two of the six

editions were from June administrations, where the preponderance of test-takers

are high school juniors: In June 1985, the mean was 477, while the

corresponding mean in June 1986 was 477. The last two editions were from

November administrations, which are predominantly high school senior

populations: The November 1983 mean was 477, while the corresponding mean was

485 in November 1985.

16
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The January 1983 edition was part of the June 1986 equating calibration

design, which also included the June 1985 edition. The January 1982 edition was

part of the November 1985 equating calibration design, which also included the

November 1986 edition.

In addition to examining the dimensional structure across different

editions of SAT-Mathematics, another goal of this research was to determine the

extent to which dimensional structure of the test is invariant across

populations differing in ability. While operational sections of the SAT are

generally administered to a large population only once, the same equating test

is administered to several large populations. As part of the equating data

collection design, editioh Z is linked to edition X via one equating test, and

to edition Y via a different equating test, as indicated in Figure 1. The common

anchor tests from this design provide an opportunity to assess the stability of

equating test factor structure across different populations. All samples in

these analyses involved approximately 3,000 examinees.

Formation of Item Parcels

Expanding upon the methodology used by Cook, Dorans, and Eignor (in press),

items from each SAT-Mathematical edition were separated into parallel item

subsets, referred to in this research as item parcels, using the principles

described earlier in this report. Parcels of approximate equivalent difficulty

and standard deviation were formed by selecting items based on their observed

p-values (computed as the number of examinees answering the item correctly,

divided by the number of examinees in the sample). Following the formation of

item parcels, scores on the parcels were computed for each examinee, using a

binary right/wrong scoring of the item data. Item parcel scores within each

edition were then intercorrelated, and the resulting correlation matrices served

17
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as input for linear confirmatory factor analyses (covariance matrices were used

in the cross-population analyses).

For SAT-Mathematical operational tests, and equating sections, content area

defined the parcel. Within each content area (arithmetic, algebra, geometry, and

miscellaneous) items were placed into parcels of four to seven items each.

Hypothesized Factor Structures for Confirmatory LISREL Analyses

Eleven item parcels for five of the mathematical test forms were

constructed, as follows: fhree arithmetic parcels, three algebra parcels, three

geometry parcels, and two miscellaneous parcels. One of the editions

(administered in January 1982) was separated into only ten, rather than eleven,

parcels because it had fewer miscellaneous items and only one parcel in that

category was needed. In forming item parcels, four-choice items and five-choice

items were distributed across the parcels in equal numbers.

The structure for the factor pattern matrices and factor correlation

matrices for the SAT-Mathematical analyses are presented in Figure 2.

Underlying the three-factor solution depicted in Figure 2 is a second-order

model, which assumes that a general mathematical factor and three

content-related first-order factors explain the common portion component of item

parcel correlations. For this model, and the other models, item parcels for

miscellaneous items are assumed to load on all of the first-order factors. The

one-factor model assumes that SAT-Mathematical is a unidimensional test.The

two-factor solution is a first-order model which assumes that algebra and

arithmetic item parcels load on one factor, and geometry item parcels load on a

second factor.

Factorial Invariance of Equating Sections. In constructing item parcels

for the equating sections, fhe same parceldefinitions were used, i.e., content

18
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area. For the mathematical equating sections, which contain 25 five-choice

items, seven item parcels were constructed (two for each content area, and one

for the miscellaneous items).

Dimensional structure of equating sections was assessed using the same

factor structures as were found to underlie the mathematical operational tests,

i.e., as displayed in Figure 1, although each factor is defined by fewer

parcels. Factorial invariance across populations on a particular equating

section was assessed by evaluating the fit of a factor model which assumes

equivalent factor pattern matrices for the two samples taking the same equating

section. Parcel covariance matrices, rather than parcel correlation matrices,

were analyzed in the factorial invariance analyses for reasons cited in Joreskog

(1971) and Meredith (1964).

Factorial invariance of factor structures across populations was assessed

by applying separate simultaneous factor analyses to each of four verbal

equating sections and four mathematical equating sections. LISREL was used to

examine the hypothesis that the factor pattern underlying parcel covariances for

a particular equating section is the same in two populations. To study factorial

invariance, it was necessary, for each equating section, to estimate a model

that constrains the same common factor pattern matrix over the two populations

of interest. Distributions of NRs and RMSR for this constrained model were

compared to fit indices resulting from a model that does not place an equality

constraint on the factor pattern in each population (i.e., the factor pattern is

estimated separately within each population). If the constrained model is found

to fit the data as well as the unconstrained model, we may conclude that the

factor structure underlying the parcel covariances is the same in each

population receiving the same equating section.
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Exploratory Factor Analysis

One of the major criticisms lodged against the parcel approach is that it

assumes that items are unidimensional within parcels. To deal with this

criticism, our original intention was to use the full information factor

analysis model to assess dimensionality within parcels. As we attempted to use

TESTFACT in this manner, we encountered several obstacles, including TESTFACT's

"user-unfriendliness" and its cost. In a spirit consonant with exploratory

factor analysis, Dorans and Lawrence (1987) began to experiment with various

options available in the TESTFACT program. The goal of our exploration was to

find a cost-effective way of using TESTFACT that could be used in conjunction

with the relatively inexpensive use of LISREL to analyze parcel data. In the

process, we examined a cost effective alternative to the parcel approach. All

our exploration involved data from the June 1986 equating data collection

design, which included the June 1985 and January 1983 editions. We performed

three major types of analyses.

First, for the June 1986 SAT-Mathematical, we used the full information

factor analysis approach to assess dimensionality within parcels. For these

analyses, item data was scored right/wrong/missing and the adjustment for

missing data described in Bock, Gibbons and Muraki (1986) was used. On a

formula-scored test like ehe SAT, examinees tend to omit very difficult items.

In addition, some examinees do not reach all test items. Hence, there exists

missing data that needs to be treated differently than right/wrong. Analyses

were performed with and without Carroll's (1945) correction for :,,tiessing which

is also described in Bock et al. (1986). Estimates of the lower asymptote from

IRT item calibrations under the three-parameter logistic model were used for the

correction for guessing.
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Second, as an alternative to the parcel approach, we used TESTFACT to

obtain least squares factor analyses of a smoothed positive definite matrix of

tetrachorics corrected for guessing on the full SAT-Mathematical editions

administered in June 1986, June 1985 and January 1983. This analysis is a

cost-effective way of using TESTFACT to factor analyze item data. It was

performed under two item scoring conditions: omits and not reached treated as

wrong, i.e., the right/wrong condition, and omits and not reached treated as

missing and adjusted via the procedure described in Bock, Gibbons and Muraki

(1986).

Third, the full information factor analysis approach was applied to the

25-item M1 section of the January 1983 edition.

Results and Discussion

Confirmatory Factor Analyses of SAT-Mathematical Item Parcels

Table 1 contains distributions of normalized residuals (NRs) for the factor

analyses of SAT-Mathematical item parcels. Each panel in Table 1 (one for each

of the six editions) contains a distribution of NRs associated with the three

solutions of interest (see Figure 2): (1) a one-factor solution, (2) a

two-factor solution, which assumes a second factor defined by geometry item

parcels, and (3) a three-factor solution which hypothesizes a separate factor

for each content area. For each solution, the root mean square raw residual

(RMSR), which provides a summary index of the fit of the model, is displayed in

Table 2.

The information contained in these tables reveals that SAT-Mathematical is

clearly unidimensional. For the six editions studied, a solution with a single

factor provides an excellent fit to the item parcel data. Out of a possible 55

NRs associated with each of five of the test editions, the number of NRs greater
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than 2.0 standard deviation units is one or two per edition, typically involving

the correlation between two miscellaneous parcels. With respect to the sixth

test edition (January 1982), 2 out of a possible 45 NRs are greater than 2.0.

Thus, with the exception of one or two data points, virtually all of the

inter-parcel correlations fitte :. by a one-factor model have NRs within a band

which ranges between -2.0 and + 2.0.

The data contained in these tables also indicates that addition of a second

factor, defined by geometry item parcels, provides little in terms of

improvement in fit to the data. As can be seen in Table 2, differences in RMSR

for a one-factor solution and a two-factor solution are slight, ranging between

.02 anC .06. Finally, looking at results for the three-factor solution, we see

that improvement in fit to the data is trivial. In fact, for two of the editions

the item parcels are so collinear that LISREL VI could not extract a third

factor.

In addition to assessing model fit, another, more substantive approach to

determining whether SAT-Mathematical is unidimensional is to examine the

intercorrelations among the factors defined by the mathematical content areas.

These results are displayed in Table 3, which presents factor intercorrelations

by edition for the three-factor solution, and for the two-factor solution in

cases where a third factor was not extracted. For the solution with three

factors, correlations are all above .92, and several are as high as .99. Within

this limited range, the correlation between algebra and arithmetic is always

higher than the correlations between algebra or arithmetic with geometry. The

consistency of this finding for four editions suggests that geometry parcels mdy

be measuring a construct which differs slightly from what is being measured by

algebra and arithmetic parcels. However, for the two editions where it was not
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possible to extract a third factor, the correlations between factors in the

two-factor solution are exceptionally high (.96 and .95).

Table 4 displays the relative contributions of one general factor and three

content specific factors to the variance of the first-order factors based on a

second-order factor solution. Again, data are presented for four of the six

editions, as it was not possible to fit a second-order solution for all of the

editions. Comparing across editions, the general factor accounts for typically

99 percent of the algebra parcel variance, about 98 percent of the arithmetic

parcel variance, and about 90 percent of the geometry parcel variance. From this

we may conclude that the general factor is slightly less related to the geometry

factor than it is to the algebra and arithmetic factors.

In conclusion, confirmatory factor analyses of item parcel data for SAT-

Mathematical provide evidence that the test is essentially unidimensional. This

conclusion is buttressed by findings which are consistent across several

editions administered to populations of varying ability.

Confirmatory Factor Analyses of Mathematical Equating Section Item Parcels

Distributions of NRs for the factor analyses of mathematical equating

section item parcels are displayed in Table 5. Each panel in the table focuses

on model fit for a single equating section that was administered to two

different large populations. LISREL was used to factor analyze item parcel

covariance matrices from two populations simultaneously.

Fol. each mathematical equating section, two analyses were done. In the

first analysis, referred to in the table as Nithin-'population", a separate

factor structure is assumed to explain the item parcel covariance data

associated with each population. In the second analysis, referred to in the

table as "Between-populations", an equivalent factor structure is assumed to
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underlie the item parcel covariance data within each population. The within-

population distributions of NRs portray the overall fit of each model within

each population. The between-population distributions of NRs indicate the fit

of the hypothesized model when factor loadings are constrained to be equal

across both populations.

The RMSR for each within-population and between-population solution is

presented in Table 6. The last column in the table, "RMSR Difference",

indicates the loss in model fit as a result of imposing the equal factor

loadings constraint on item parcel covariance data from the two populations

Distributions of NRs and RMSR for the within-population analyses indicate

that a one-factor solution provides an excellent fit to the item parcel

covariance data. A similar finding was found with respect to the six editions of

SAT-Mathematical (see earlier section).

Inspection of between-population NRs and RMSR suggest that a common loading

matrix fits the data reasonably well in each of the two populations taking

equating sections gx, iv, and jp, respectively. The exception to this finding

is with respect to equating section il, which was administered to a January

population and a June population. The normalized residual matri--s (not shown)

for these analyses show larger residuals associated with geometry and

miscellaneous item parcels. One possibility is that curriculum experience

differences between a June administration (primarily juniors) and a January

administration (mostly seniors) may be responsible for the apparent lack of

model fit when the loading matrix is constrained equal across the two

populations. This does not appear to be the case for equating section gx, which

was administered to a January population and a November population, both

primarily senior populations where differences in curriculum would be expected
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to have a smaller effect. However, relative to both of these equating sections,

better between-population fit is observed when the factor structure is assumed

equal over populations of similar ability (i.e., equating sections iv and jp).

Synthesis of Confirmatory Factor Analysis Results

The confirmatory factor analysis results for the six editions of

SAT-Mathematical and the four Mathematical equating sections strongly indicate

that the SAT-Mathematical Test is unidimensional. Of the three content areas,

geometry content seems to exhibit the most unique veriance. The average loading

of the geometry factor on the general factor ts .95, which is the expected

correlation between an infinitely long total mathematics score and an infinitely

long geometry score. Hence, there is little empirical justification for

reporting subscores for SAT-Mathematical on the basis of content.

Exploratory Factor Analyses Results for SAT-Mathematical

Three types of exploratory alslyses were performed: (1) Within-parcel full

information factor analyses; (2) analyses of adjusted tetrachorics; and (3) full

information factor analysis of an intact section. The results for each of these

solutions are presented in order.

Within-parcel analyses. Each of the 11 parcels for the June 1986 edition

of the SAT-Mathematical were subjected to two types of full information factor

analyses: one involving a correction for guessing, which we refer to as the

3PNO solution (for three parameter normal ogive), and one involving no

correction for guessing, the 2PNO solution. Both solutions used item data

scored as right/wrong/missing.

Table 7 contains a summary of the results of these 22 TESTFACT runs.

Running down the middle of the table are each parcel's label, the number of
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items in each parcel and the parcel's KR-20 reliability estimate. With the

exception of the last miscellaneous parcel (MIS2), parcels were composed of five

or six items and had reliabilities ranging from .40 to .60.

Testing the unidimensionality within each parcel was the purpose of these

TESTFACT analyses. Two criteria were used for assessing unidimensionality: the

number of latent roots of the adjusted tetrachorics matrix that are greater than

one, and the number of factors significant at the .05 level.

For the 3PNO model, the left-hand portion of able 7, the root criterion

indicated that all 11 parcels were unidimensional In contrast, five of the 11

full information solutions indicated a second sip, ant factor. Four of these

five solutions seemed to suffer from overfactoring in that the PROMAX rotation

produced an orientation of factors in which the second factor was marked by a

single item only, and several of the items had communality estimates that were

higher than the parcel KR-20, suggesting that items were more reliable than

their composite, an unreasonable result. The fifeh solution had the markings of

a solution that contained difficulty factors. The easier items on GE01 loaded

on one factor, while the harder items loaded on the second factor. The

significance test criterion seemed to lead to overfactoring.

The results for the 2PNO model were more affected by methodological

artifacts than those for ehe 3PNO model, demonstrating the need for the

correction for guessing.

Adjusted tetrachorics analyses. The full 60-item editions of

SAT-Mathematical that were administered in January 1983, June 1985 and June 1986

were subjected to least square analyses of a smoothed positive definite matrix

of tetrachorics adjusted for guessing under two types of item scoring:

right/wrong/missing and right/wrong. Table 8 contains details about the number
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of factors, number of tetrachorics set to 1 (for reasons of sparse data in some

of the cells of the 2x2 table of corrects and incorrects) prior to smoothing,

and correlations between the first and second PROMAX factors.

The proportions of variance accounted for by the first four roots of the

tetrachoric matrix are listed in Table 8. With the possible exception of the

January 1983 right/wrong solution, two factors seem to be indicated. Note that

one effect of treating missing data as wrong is to make the solution appear more

unidimensional. One reason for this more unidimensional appearance is the large

number of tetrachorics set equal to one under right/wrong scoring. Note that

17.3% of the tetrachorics for the January 1983 solution, which appears most

unidimensional, are set to one. In contrast, under right/wrong/missing scoring,

less than 1% of the tetradhorics are set equal to 1 for the January 1983

solution.

The PROMAX solut4ons for all six factor analyses of adjusted tetrachorics

result in two factors that be labelled "easy" and "hard." Cross-tabulations

of the loadings on factors I and II versus the difficulty of the item are

presentee for all six solutions in Table 9. The rules for classifying items

onto factor I, factor II or both I and II (I/II) and in terms of diffi.sulty (E,

M or H for easy, middle, or hard, respectively) are given at the foot of the
.

table. These cross-tabulations clearly justify the "easy" label for factor I

and the "hard" label for factor II. Note that the effects of the right/wrong

scoring are two-fold: it shifts items from easy towards hard and tends to

disgui the difficulty factors a bit. Tables 10, 11 and 12 present

cross-* -bulations for each of the three content areas, arithmetic, algebra and

geometry. The difficulty factors hold up across all three content areas.
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In sum, the tetrachoric analyses seem to be susceptible to the "difficulty"

factor bugaboo that has plagued factor analysis of item data, despite the

corrections for guessing and missing and the smoothing that went into the

production of the final matrix of tetrachorics.

Full information factor analysis of an intact section. The 2f-item M1

section of the January 1983 edition of the SAT-Mathematical Test was analyzed

under the 3PNO full information model which operated on items scored as right,

wrong or missing. Two factors were extracted at a cost of about 8250. We

stopped at two factors for cost reasons and because differences in proportions

of variance accounted for by successive factors suggested a two-factor solution

was adequate. The second factor offered a statistically significant improvement

over the one-factor solution. The cross-tabulations at the bottom of Table 13

indicate that the PROMAX loadings are not as related to difficulty as they were

fnr the tetrachoric solutions. In fact, the table at the right suggests that

the first factor might be a geometry factor, which is consistent with the LISREL

analyses which suggested that any departure from unidimensionality, albeit

slight, might be attributed to the geometry items. This application of full

information factor analyses seems to be somewhat successful in that difficulty

factors were avoided and an interpretable two-factor solution was achieved.

Discussion

Dimensionality analyses of SAT-Mathematical indicate that the test is

unidimensional. Confirmatory factor analyses of item parcel data provide

evidence that a single-factor solution provides an excellent fit to the data.

This conclusion of unidimensionality is partially borne out by exploratory

factor analysis at the item-level, using full-information factor analysis with a

three-parameter normal ogive model on items scores as right/wrong/missing. In
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sum, it is apparent that subscores based on content are not needed for

SAT-Mathematical.

The analyses conducted in this study have served to underscore the valuecof

using confirmatory factor analysis of item parcel data to study the dimensions]:

structure of test data. This approach is computationally inexpensive, and

a::!ars to provide meaningful and consistent results. The use of parallel

parce1zs mdkes item data amenable to linear factor analysis. The method seems

circumvent the problems associated with directly factor analyzing item data,

namely, the propagation of artifactual "difficulty" factors. The method can also

avoid the problem of observing a "speed" factor, as items from later positions

in the test can be balanced across parcels. In sum, the parallel parcel approach

can be used to dispense with difficulty and speed factors and, hence, obtain a

clearer look at the substantive factor structure of the test.

One criticism of confirmatory factor analysis is that the approach enables

one to "find what one is looking for". This criticism does not bear out in this

study, as can be seen from the results of factor analyzing SAT-Mathematical.

SAT-Mathematical is an example where item content might be expected to emerge as

a factor, yet the one-factor model fits the data as well as a model

hypothesizing separate factors for different content areas.

The formation of parallel item parcels can be time-consuming. Routine use

of the parcel approach to assess test dimensionality would be facilitated if a

computerized algorithm for building parallel parcels were developed.

Investigation of the categorization attenuation factor (Drasgow & Dorans, 1982)

might prove fruitful.

The within-parcel analyses conducted in this research indicated that

assuming a three-parameter logistic model for the items provides more meaningful
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results than assuming a two-parameter model. For SAT data it was possible to

assume a three-parameter model by using as guessing parameters the c-values

estimated in previous IRT calibrations of the items (using LOGIST). Bock and

colleagues (1986) argue for using actual c-values with TESTFACT.

In addition to, or instead of, assessing dimensionality within item

parcels, it might be useful to apply full-information factor analysis to a

subset of items comprising parcels of the same item type or content area (i.e.,

factor analyze all algebra items). Unidimensionality of the subset of items

would be evidence for unidimensionality of parcels comprising these items.

However, in order to curtail computer costs, full-information factor analysis

should be restricted to fifteen or fewer items.

The use of TESTFACT to assess test dimensionality by factor analyzing a

smoothed positive definite matrix of tetrachorics seems to suffer from the

"difficulty" factor problem that has plagued most previous attempts at factor

analyzing item data. It appears that the correction for missing data (omitted

and not-reached items) used by TESTFACT leads to cleaner "difficulty" factors

than the treatment of missing data as an incorrect response. This enhancement of

interpretability of the "difficulty" factor might be due to,the fact that the

correction for missing data used in TESTFACT is essentially consistent with a

correction that would follow from a missing at random assumption. A conditional

missing at random assumption that takes examinee ability as well as item

difficulty into account might yield a correction that is less likely to extract

"difficulty" factors in a tetrachoric analysis. Given that the tetrachoric

approach to directly factor analyzing item data is relatively inexpensive,

research into more appropriate adjustments for formula-scored tests seems

warranted.
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One critl-,Asm of the parcel approach is that it does not address

dimensionality at the item level because an item may measure a property that is

lost in the analysis of parcels. This is an important criticism that warrants

further study. One question such research.would address is whether

dimensionality at the test score level is the same as dimensionality at the item

score level. One might argue that a linear factor analysis of parallel parcel

data is more likely to provide a better picture of test score dimensionality

than dimensionality analysis of item level data, because (1) parallel parcel

data is more like test data, (2) item level data is fraught with noise due to

the unreliability of a single item, and (3) variation due to differences in item

difficulty and examinee item responding strategies are likely to dominate item

level analyses. For these reasons, the parallel parcel approach may be a

reasonable way of dampening statistical effects to focus on substantive

findings.
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Table 1

Distributions of Normalized Residuals
for the Various Factor Analytic Solutions:

SAT Mathematical Parcel Data

January 1982 (N-4238) January 1983 (N-3094)
Normalized
Residuals 1-Factor

a
2-Factor

b
3-Factor

c
1-Factor

a
2-Factor

b
3-Factor

c

NR<-3 0 0 0 0 0
-3<NR<-2 0 0 0 1 1
-2<NR< 2 43 45 44 53 53 d
2<NR< 3 2 0 1 1 1
NR> 3 0 0 0 . 0 0

June 1985 (N-3081) June 1986 (N-3102)
Normalized
Residuals 1-Factor 8 2-Factor

b
3-Factor

c
1-Factor

a
2-Factor

b
3-Factor

c

NRg-3 0 0 0 0 0 0
-3<NR<-2 0 0 0 0 1 0
-2<NR< 2 53 55 55 53 53 55
2<NR< 3 1 0 0 1 0 0
NR> 3 1 0 0 1 1 0

November 1983 (N-4660) November 1985 (N-3602)
Normalized
Residuals 1-Factor

a
2-Factor

b
3-Factor

c
1-Factor

a
2-Factor

b
3-Factor

c

NR<-3 0 0 0 0 0
-3<NR<-2 0 0 0 0 0
-2<NR< 2 54 55 d 54 54 55
2<NR< 3 1 0 1 1 0
NR> 3 0 n 0 0 0

Note: See Figure 2 for pictorial representation of models.

4The one-factor solution assumes that all parcels load on a single factor.
b
The two-factor solution assumes that arithmetic and algebra parcels load
on one factor, geometry parcels load on a second factor, and miscellaneous
parcels load on both factors.

c
The three-factor solution assumes that algebra parcels load on first factor,
arithmetic parcels load on second factor, geometry parcels load on third
factor, and miscellaneous parcels load on all three factors.

dNot possible to extract a third factor.
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Table 2

Admin.

Root Mean Square Raw Residual by
SAT-Mathematical Edition and Factor Analytic Solution

1 factora 2 factor
b

3 factorc

1/82 .014 .011 .009

1/83 .016 .013 -

6/85 .017 .011 .010

6/86 .021 .017 .009

11/83 .011 .007

11/85 .012 .009 .007

aThe one-factor solution assumes that all parcels load on a single factor.
b
The two-factor solution assumes that arithmetic and algebra parcels load
on one factor, geometry parcels load on a second factor, and miscellaneous
parcels load on both factors.

c
The three-factor solution assumes that algebra parcels load on first factor,
arithmetic parcels load on second factor, geometry parcels load on third
factor, and miscellaneous parcels load on all three factors.
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Table 3

Intercorrelations of Content Area Factors in the
Three-factor and Two-factor Solution for

SAT-Mathematical Editions

Admin.

I

I

ALGEBRA

fac_L(2KE

II

ARITH

III

GEOMETRY

1.0
1/82 II .969 1.0

III .951 .938 1.0

I 1.0
6/85 II .996 1.0

III .954 .951 1.0

I 1.0
6/86 II .994 1.0

III .922 .940 1.0

I 1.0
11/85 II .998 1.0

III .953 .946 1.0

Admin.

I II
ALGB,
ARITH. GEOMETRY

1/83 I 1.0
II .957 1.0

11/83 I 1.0
II .953 1.0
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Table 4

Relative Contributions of One General Factor and
Three Content Area Factors to Variance of First

Order Parcel Factors for SAT Mathematical Editions

&data,. First Order Factors
Algebra Arithmetic Geometry

1/82

6/85

6/86

11/85

general factor

content area factor

general factor

content area factor

general factor

content area factor

general factor

content area factor

.98 .96 .92

.02 .04 .08

1.00 .99 .91

.00 .01 .09

.98 1.00 .87

.02 .00 .13

1.00 .99 .90

.00 .01 .10
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Table 5

Distributions of Normalized Residuals for
the Within- and Between-Population One-Factor Solution:

Mathematical Equating Sections

Section: i11 June 1986

Within Between Normalized Within Between
Population Population gesiduals Population Population

0 0 NKS- 3 0 0
0 3 -3<NR5.-2 0 0
28 24 -2<NR< 2 27 25
0 1 2<NR< 3 i 3
0 0 NR> 3 0 0

June 1985 Section: lp June 1986

Within Between Normalized Within Between
Population Population Residuals Population Population

0 0 NR.5.-3 0 0
0 0 -3<NR<-2 0 0

27 26 -2<NR< 2 28 28
1 2 2<NR< 3 0 0
0 0 NR> 3 0 0

January 1982 Section: zm November 1985

Within Between Normalized Within Between
Population Population Residuals Population Population

0 0 NR<-3 0 0
0 1 -3<Ngg-2 0 0

28 26 -2<NR< 2 28 28
0 0 2<NR< 3 0 0
0 1 NR> 3 0 0

November 1983 Section: ly November 1985

Within Between Normalized Within Between
Population Population Residuals Population Population

0 0 NR<-3 0 0
0 0 -3<NR<-2 1 1

28 27 -2<NR< 2 26 26
0 1 2<NR< 3 1 1
0 0 NRa 3 0 0
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Table 6

Root Mean Square Residual by Mathematical
Equating Section and Factor Analytic Solution

Admin. Eguating Section
1-Factor

Within PPR,
1-Factor

Between PPP.
RMSR
Diff

1/83 ii. .016 .026 -.010
6/86 ii. .016 .026 -.010

6/85 JP .017 .019 -.002
6/86 JP .016 .018 -.002

11/83 iv .010 .011 -.001
11/85 iv .013 .015 -.002

1/82 gx .007 .018 -.011
11/85 gx .006 .019 -.013
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Table 7

Within-Parcel Full Information Factor Analysis
of SAT-Mathematical Edition Administered in

June 1986

3PNO Model

Parcel # Items KR-20
2PNO Model (c-O)

Number of Factors __Number of Factors
Root >1 Sig. (.05)

ALG1
AIG2
ALG3
ARI1
ARI2
ARI3
GE01
GE02
GE03
MIS1
MIS2

6

6

5

6

6

6

6

5

5

5

4

.40

.55

.41

.55

.57

.50

.56

.60

.62

.54

.37

Root >1 Sig. (.05)

1

1

1

1

1

1

1

1

1

1

1

1

2a
2a
1

1

2a
2

1

1

1

1

1

1

1

1

1
d

2

1

1

1

1

2c

2c
1

1

1

2c

2
d

2c
2c
2c
1

Comments

a
Second factor is a specific factor. Over 60% of item communality estimates
for these four two-factor solutions exceed their respective parcel KR-20
coefficients.
b
First factor marked by easy items.

c
Second factor is a specific factor.
for these five two-factor solutions

d
First factor marked by easy items.

Second factor marked by hard items.

Over 45% of item communality estimates
exceed their respective KR-20 coefficients.

Second factor marked by hard items.
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Table 8

Analyses of Tetrachorics Adjusted for Gues'siag
SAT-Mathematical

PVAF

TETRA-1

R
12

Right/Wrong/Missing Right/Wrong
Item Scoring Item Scoring

47.7%, 4.5%,

.8%

.78

January 1983

3.4%, 2.7%, 2.2%

17.3%

.84

2.7%, 2.4% 53.6%,

June 1985

PVAF 43.4%, 5.5%, 2.6%, 2.3% 48.5%, 3.7%, 2.6%, 2.5%

TETRA-1 1.8% 15.6%

R
12

.80 .80

June 1986,

PVAF 43.5%, 5.0%, 2.6%, 2.4% 47.2%, 4.1%, 3.0%, 2.5%

TETRA-1 3.6% 12.3%

R
12

.75 .76

Note: PVAF proportion of variance accounted for by the first
four roots

TETRA 1 number of tetrachorics set equal .t.Y
R
12

correlation between factors
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Table 9

Crosstabulation of Factor Loading
a
and Difficulty

b

C1wLsificacions for Tetrachoric Solution of the
SAT-Mathematical Test

II

II

Right/Wrong/Missing
Item Scoring

January 1983

17 16 1

3 5 0

0 1 17

21 5 0

3 7 2

1 8 13

24 9 0

2 7 2

0 4 12

June 1985

June 1986

II

II

II

Right/Wrong
Item Scoring

12 8 0

3 11 2

0 6 18

15 2 0

3 10 2

3 5 20

18 14 2

3 6 3

0 1 13

a
Items classified as I if loading on Factor I >.4 and loading on Factor II <.4,
Items classified as II if loading on Factor I <.4 and loading on Factor II >.4, or
Items classified as I/II otherwise.

b
Easy (E): p > .7; Hard (H): p < .4; Middle (M): otherwise.
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Table 10

Crosstabulation of Factor Loading
a
and Difficulty

b

Classifications for Tetrachoric Solution of the
SAT-Mathematical Test

II

II

II

Arithmetic

Right/Wrong/Missing
Item Scoring

January 1983

7 5 1

0 1 0

0 1 4

6 0 0

2 2 0

1 0 7

11 0 0

0 3 0

0 1 3

June 1985

June 1986

II

II

II

Right/Wrong
Item Scoring

0

1

4

11

4 0 0

1 2 0

3 1 7

7 3

1 2

0 0

aItems classified as I if loading on Factor I .4 and loading on Factor II .4,
Items classified as II if loading on Factor I <.4 and loading on Factor II >.4, or
Items classified as I/II otherwise.

b
Easy (E): p > .7; Hard (H): p < .4; Middle (M): otherwise.
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II

Table 11

Crosstabulation of Factor Loading
a

and Difficulty
b

Classifications for Tetrachoric Solution of the
SAT-Mathematical Test

Algebra

Right/Wrong/Missing
Item SP.to in

Januau 1983

5 5 0

0 1 0

0 0 6

5 3 0

0 4 2

0 1 2

8 1 0

1 2 0

0 1 4

June 1985

June 1986

II

Right/Wrong
Item Scoring

3 4 0

1 0 0

0 2 7

I/II

II

4 1 0

1 3 2

0 2 4

II

8 1 0

1 2 1

0 0 4

a
Items classified as I if loading on Factor I >.4 and loading on Factor II <.4,
Items classified as II if loading on Factor I <.4 and loading on Factor II >.4, or
Items classified as I/II otherwise.

b
Easy (E): p > .7; Hard (H): p < .4; Middle (M): otherwise.
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Table 12

Crosstdbulation of Factor Loading
a
and Difficulty

b

Classifications for Tetrachoric Solution of the
SAT-Mathematical Test

II

II

II

Geometry

Right/Wrong/Missing
Item Scoring

January 1983

2 5 0

2 2 0

0 0 5

5 2 0

1 0 0

0 6 3

11

4 1 5 0

0 1 1

0 2 3

June 1985

June 1986

II

II

II

Right/Wrong
Item Scoring

1 1 0

1 5 1

0 2 5

5 0 0

0 3 0

0 2 7

2 8 0

0 1 0

0 1 4

a
Items classified as I if loading on Factor I >.4 and loading on Factor II <.4,
Items classified as II if loading on Factor I <.4 and loading on Factor II >.4, or
Items classified as I/II otherwise.

b
Easy (E): p > .7; Hard (H): p < .4; Middle (M): otherwise.
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Table 13

Full Information 3PNO Factor Analyses Under
Right/Wrong/Missing Item Scoring of the

25-item M1 SAT-Mathematical Edition
Administered in January 1983

Number of Factors

PVAF: 50.3%, 5.9%, 3.9%, 3.7%, 3.5%, . .

TETRA-1: 1.3%

Significant: at least 2

r12
.78

5 7 3

2 0 0

4 l 3

Classificationsa

II

GEO AIG ARI MIS

7 3 3 2

0 1 0 1

0 3 5 0

a
See Table 9 for classification schemes for E, M, H and
I, I/II, II.

Note: PVAF proportion of variance accounted for by the first
five roots

TETRA 1 nuMber of tetrachorics set equal to one
R
12

correlation between factors

4 6
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Figure 1

SAT Equating Data Collection Design

New
Form

Equating
Block to
Old Form X

Old
Form
X

Equating
Block to
Old Form Y

Old
Form
Y

New Form Z Sample 1
New Form Z Sample 2
Old Form X Sample
Old Form Y Sample

X
X

X

X X
X

X X
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Figure 2

Factor Pattern Matrices for SAT-Mathematical Editions

Parcel Content 3-Factor 2-Factor 1-Factor

1 Algebra 1 0 0 1 0 1
2 Algebra X 0 0 X 0 X
3 Algebra X 0 0 X 0 X
4 Arithmetic 0 1 0 X 0 X
5 Arithmetic 0 X 0 X 0 X
6 Arithmetic 0 X 0 X 0 X
7 Geometry 0 0 1 0 1 X
8 Geometry O O X 0 X X
9 Geometry O O X 0 X X

10 Miscellaneous X X X X X X
11 Miscellaneous X X X X X X

Factor intercorrelations matrices for SAT-Mathematical Editions

1

Xl X 1
X X 1

1 loading fixed to equal one
X parameter to be estimated
0 loading fixed to equal zero

1

Note: For one edition (January, 1982), there was only one parcel
for miscellaneous items.
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